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Review

mMOS transistors are used as switches to implement logic functions.
O®N-type: connect to GND, turn on (with 1) to pull down to O
®P-type: connect to +2.9V, turn on (with 0) to pull up to 1

mBasic gates: NOT, NOR, NAND

® Logic functions are usually expressed with AND, OR, and NOT

mProperties of logic gates

® Completeness

—can implement any truth table with AND, OR, NOT

® DeMorgan's Law

—convert AND to OR by inverting inputs and output
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Review

B We' ve touched on basic digital logic
® Transistors
® Gates
® Storage (latches, flip-flops, memory)
® State machines
B Built some simple circuits
® adder, subtracter, adder/subtracter, Incrementer
® Counter (consisting of register and incrementer)
® Hard-coded traffic sign state machine
® Programmable traffic sign state machine

B Up next: a computer as a state machine
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Today

B Great Idea #2: Stored program computer(Von Neumann Model--A Machine Structure
®Basic Components for a machine
®The ILC-3: An Example von Neumann Machine

® Instruction Processing
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Great Idea #3: Abstraction Helps Us Manage Complexity

. . Solve a system of equations
Application
Algorithm and Data Structure /I\
Gaussian Jacobi

Red-black SOR elimination iteration Multigrid

Programming Language/Compiler

Operating System/Virtual Machines ﬂ\
FORTRAN C C++ Java
Instruction Set Architecture (ISA) ‘.
Microarchitecture Sun SPARC Intel x86 IBM PowerPC
Gates/Register-Transfer Level (RTL)
Core 2 Duo

Pentium 4 AMD Athlon X2
Analog/Digital Circuits A

Electronic Devices Ripple-carry adder  Carry-lookahead adder

Physics
\ J Static CMOS Dynamic CMOS

Nanomechanical
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Great Idea #4: Software and Hardware Co-design

Application

Algorithm & Data Structure

Language

Software
Hardware | Machine Architecture, ISA
Microarchitecture
Logic and IC Now. You
— are Here.
// ' \\\
Q ) Device
\_\\\\_ ///

Computer System: Layers of Abstraction
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Register

B A register stores a multi-bit value.
®We use a collection of D-latches, all controlled by a common WE.

®When WE=1, n-bit value D 1is written to register.

D D D D

3 2 1 0

WE 1 I I ;




Register

m A four-bit register

® \We use a collection of flip-flops instead of D-latches
® Read the contents of a reqgister throughout a clock cycle
® And store a new value in the register at the end of that same clock cycle

Clock Ds D, Dy Do

>

Figure 3.36 A four-bit register.
2024/10/17 9



Outline

n From ENIAC to the Stored Program Computer

Basic Components

The LC-3: An Example von Neumann Machine

Instruction Processing

Our First Program: A Multiplication Algorithm

Summary




ENIAC - The first electronic computer ,1946%F
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Changing the program could take days!

2024/10/17 11



The Origin of the Stored Program Computer

1944: ENIAC

® Presper Eckert and John Mauchly -- first general electronic computer.

® Hard-wired program -- settings of dials and switches.
1944: Beginnings of EDVAC

® John von Neumann joined ENIAC team and proposed a stored program computer

called EDVAC

1945: John von Neumann

John von Neumann,

c. 1955 ® John von Neumann wrote "First Draft of a Report on the EDVAC" in which he
Credit: Computer _ _
History Museum outlined the architecture of a stored-program computer.

® failed to credit designers, ironically still gets credit

The basic structure proposed in the draft became known as the “von Neumann machine” (or
model).

® a memory, containing instructions and data

® a processing unit, for performing arithmetic and logical operations
® a control unit, for interpreting instructions

2024/10/17 12



The Stored Program Computer Architecture
(von Neumann Machine Architecture or Model)

Control Bus M
S Input emory Output
Data & Address Bus
Memory Memory
Data Address
Register Register
MEMORY
>
> MAR MDR l t
INPUT T l OUTPUT Central Processing Unit
Keyboard Monitor
Mouse § PROCESSING UNIT Printer A VW B Registers
S : LED . . . . e
D;::I:mer N T Dlsk Arithmetic Logic Unit TeMrréfno(;?)r/y
CONTROL UNIT Control Unit
:; Program Instruction
PC IR Counter Register
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The Stored Program Computer

Electronic storage of

l’:*’ SSsssesess, | g 5 programming
E*‘f!'!_,l?!:.,l_l | (VTR E IS | information and data
ttbLL v W '\\ o eliminated the need for
ann TiTE t;;‘r'«. . S the more clumsy
LT < ,,’H - el methods of Maurice Vincent
TR B et programming, such as Wilkes
CHTT ' R % | punched paper tape —
114 | a concept that has
characterized

mainstream computer
development since
1945,
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Two major inventions of the microprocessor chip

Stored program + Transistor technology

Change the program so The device is

that you can do all smaller and faster
kinds of tasks on the than a vacuum
same hardware tube
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von Neumann Model

INPUT

» Keyboard

« Mouse

e Scanner
 Card reader
* Disk

MEMORY

MAR MDR

|

y

PROCESSING UNIT

NS
L ALU I TEMP

A
I
I

OUTPUT

* Monitor
* Printer
« LED

* Disk

A
I
I
I
I
I
I
e e

CONTROL UNIT

Y =




Memory

k x m array of stored bits (kis usually 27)
Address

® unique (n-bit) identifier of location

Contents

® m-bit value stored in location

Basic Operations:
LOAD

® read a value from a memory location

STORE

® write a value to a memory location

2024/10/17
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0010
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Interface to Memory

How does processing unit get data to/from memory?
MAR: Memory Address Register
MDR: Memory Data Register

To read a location (A):
l. Write the address (A) into the MAR.
2. Send a “read” signal to the memory.
3. Read the data from MDR.

To write a value (X) to a location (A):
1. Write the data (X) to the MDR.
2. Write the address (A) into the MAR.

3. Send a “write” signal to the memory.

2024/10/17
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MAR MDR
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Processing Unit

Functional Units
® ALU = Arithmetic and Logic Unit

® could have many functional units. some of them special-purpose

(multiply, square root, ..)

® L.C-3 performs ADD, AND, NOT
Registers

® Small, temporary storage

PROCESSING UNIT

N
L ALU J TEMP

® Operands and results of functional units
® I.C-3 has eight register (RO, .., R7)
Word Size
® number of bits normally processed by ALU in one instruction
® also width of registers

® I.C-3 is 16 bits




Input and Output

B Devices for getting data into and out of computer memory

- . . . . .
Each device has its own interface, usually a set of registers like Nl —
the memory’ s MAR and MDR .
» Keyboard * Monitor
. * Mouse * Printer
® IC-3 supports keyboard (input) and console (output) « Scanner . LED
 Card reader » Disk
® keyboard: data register (KBDR) and status register (KBSR)  Disk

® console: data register (CRTDR) and status register (CRTSR)

® frame buffer: memory-mapped pixels

B Some devices provide both input and output
® disk, network

B Program that controls access to a device is usually called a driver.

2024/10/17 22



Control Unit

B Orchestrates execution of the program

B Instruction Register (IR) contains the current instruction.

B Program Counter (PC) contains the address of the next instruction to be

executed.

B Control unit: AT e

® reads an instruction from memory l.
— the instruction’ s address is in the PC H IR

® interprets the instruction, generating signals

that tell the other components what to do

— an instruction may take many machine cycles to complete

2024/10/17 23
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LC-3 Data Path
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Instruction

B The instruction is the fundamental unit of work.

m Specifies two things:

® opcode: operation to be performed

® operands: data/locations to be used for operation

B An instruction is encoded as a sequence of bits. (Just like data!)

® Often, but not always, instructions have a fixed length, such as 16 or 32 bits.

® Control unit interprets instruction: generates sequence of control signals to

carry out operation.

® Operation is either executed completely, or not at all.

B A computer’ s instructions and their formats is known as its /nstruction Set Architecture
(ISA).

® Persistent ISA invented by UW grad Gene Amdahl (IBM 360)
2024/10/17 28




Example: LC-3 ADD Instruction

B LC-3 has 16-bit instructions.
®Each instruction has a four-bit opcode, bits [15:12].
mLC-3 has eight registers (R0-R7) for temporary storage.

® Sources and destination of ADD are registers.

15 14 13 12 11 10 9 3 ] o 9 4 3
ADD Dst Srcl |00 O| Src?

1o™ane Tami?2 11 10 9

8 7 6 4 3 2 1 0
O 0011100100 0O0110O0

“Add the contents of R2 to the contents of RG,
and store the result in R6.”
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Example: LC-3 LDR Instruction

B Load instruction -- reads data from memory
B Base + offset mode:
® add offset to base register -- result is memory address

® load from memory address into destination register

15 14 13 12 11 10 9 8 7 O . 4 3 2 1 0

LLDR Dst Base Offset

1ommEs 1] 2 11 10 9

8 7 6 5 4 3 2 1 0
0110010011 000110

“Add the value 6 to the contents of R3 to form a memory
address. Load the contents stored in that address to R2.”

2024/10/17
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Instruction Processing (State Transition)

Instruction

-

1

Instruction

N

Instruction

Fetch Instruction from memory

l

Instruction

Instruction

n+1l

Decode Instruction

Instruction

n+2

l

Evaluate Address

2024/10/17
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Fetch OPerands from memory

l

EXecute operation

l

Store result

>

Instructure Cycle

(CPI)
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Instruction Processing: FETCH

B Load next instruction (at address stored in PC) from memory into
Instruction Register (IR).
® Load contents of PC into MAR.
® Send “read” signal to memory.

® Read contents of MDR, store in IR.

B Then increment PC, so that it points to the next instruction in sequence.

® PC becomes PC+1.

15 14 13 12 11 10 S

2

1] .y

15 14 13 12 11 10 9

ADD

Dst

4
0

3
0

Src?

AND

Dst

15 14 13 12 11 10 S

15 14 13 12 11 10 S

O 001

110

4
0

3
0

2 1 0
110

0101

O 10
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Instruction Processing: DECODE

m First identify the opcode.
®In LC-3, this is always the first four bits of instruction.

O®A 4-to-16 decoder asserts a control line corresponding to

the desired opcode.
B Depending on opcode, identify other operands from the remaining bits.

® Example:

—for ADD, last three bits is source operand #2

—for LDR, last six bits is offset

15 14 13 12 11 10 9 8 7 6 5 2 1] . 15 14 13 12 11 10 S 8 7 e S5 4 3 2 1

4 s
ADD Dst Srcl 0|0 O] Src?2 AND Dst Srcl |1 Tmm

15 14 13 12 11 10 S 15 14 13 12 11 10 9

8 7 6 4 3 2 1 0 8 7 6 4 3 2 1
0001110010 000110 0101010011 10000




Instruction Processing: EVALUATE ADDRESS

m For instructions that require memory access, compute address used for

aCcess.

B Examples:

® add offset to base register (as in LDR)

® add offset to PC (or to part of PC)

® add offset to zero

15 14 13 12 11 10 9 8 7 e 5 4 3 2 1 0
LDR Dst Base Offset

15 14 13 12 11 10 9

8 7 6 5 4 3 2 1 0
0110010011 000110
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Instruction Processing: FETCH OPERANDS

B Obtain source operands needed to perform operation.

B Examples:

® read data from register file (ADD)

® load data from memory (LDR)

15 14 13 12 11 10 9 8 7 6 ) 4 s 2 1 0 15 14 13 12 11 10 ¢S 8 7 6 ) 4 3 2 1
ADD Dst Srcl |00 O| Src” AND Dst Srcl |1 Tmm

15 14 13 12 11 10 S 15 14 13 12 11 10 9

8 7 6 4 3 2 1 0 8 7 6 4 3 2 1
0001110010 000110 0101010011 10000

35
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Instruction Processing: EXECUTE

B Perform the operation, using the source operands.

B Examples:

® send operands to ALU and assert ADD signal

®do nothing (e.g., for loads and stores)

15 14 13 12 11 10 9 8 7 6 ) 4 s 2 1 0 15 14 13 12 11 10 ¢S 8 7 6 ) 4 3 2 1
ADD Dst Srcl |00 O| Src” AND Dst Srcl |1 Tmm

15 14 13 12 11 10 S 15 14 13 12 11 10 9

8 7 6 4 3 2 1 0 8 7 6 4 3 2 1
0001110010 000110 0101010011 10000

36
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Instruction Processing: STORE

B Write results to destination. (register or memory)

B Examples:

® result of ADD is placed in destination register

® result of memory load is placed in destination register

® for store instruction, data is stored to memory

— write address to MAR, data to MDR

—assert WRITE signal to memory

15 14 13 12 11 10 9 8 7 6 5 2 1] . 15 14 13 12 11 10 S 8 7 e S5 4 3 2 1

4 s
ADD Dst Srcl 0|0 O] Src?2 AND Dst Srcl |1 Tmm

15 14 13 12 11 10 S 15 14 13 12 11 10 9

8 7 6 4 3 2 1 0 8 7 6 4 3 2 1
0001110010 000110 0101010011 10000

37
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Changing the Sequence of Instructions

HIn the FETCH phase, we incremented the Program Counter by 1.

mWhat if we don’ t want to always execute the instruction that follows this one?
® examples: loop, if-then-else, function call
--Need special instructions that change the contents of the PC.

B These are called jumps and branches.
® jumps are unconditional -- they always change the PC

® branches are conditional -- they change the PC only if some

condition is true (e.g., the contents of a register is zero)

2024/10/17
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Example: LC-3 BR Instruction

HSet the PC to the value PC+PCoffset. This becomes the address of the next

instruction to fetch.

15 14 13 12 11 10 9 8 ] 6 S 4 3 2 1 U
BR Condition ‘ PCoffset

15 14 13 12 11 10

/] 6 S5 4 Sl G
0000101\ 111111010

“Load the contents of (PC + PCoffset) into the PC.”

2024/10/17 39



Control of the Instruction Cycle

B The control unit is a state machine. Here is part of a simplified state diagram for
the LC-3:

Statel £
[ MAR « PC j Stateb StatelO
PC « PC + 1 ] g [ ]
Stat 2 State4 v@'[
ate ate
LDR oo e
Decode ] [ i—' To Statel
MDR « M[MAR] IR[15:12]
Y .
State3 l %

[mem] A[ Voo [

A more complete state diagram is in Appendix C.
It will be more understandable after Chapter 5.
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Driving Force: The Clock

B The clock is a signal that keeps the control unit moving.
@At each clock “tick,” control unit moves to the next machine cycle
-—- may be next instruction or next phase of current instruction.
B Clock generator circuit:
®Based on crystal oscillator
® Generates regular sequence of “0” and “1” logic levels

® Clock Cycle (or Machine Cycle) -- rising edge to rising edge

¢ 177 i
14 On

Machine time—
Cycle

2024/10/17 41



Halting the Computer: Stopping the Clock(by TRAP Instruction)

B Control unit will repeat instruction processing sequence as long as clock is running.

® If not processing instructions from your application, then it is processing

instructions from the Operating System (OS).

® The OS is a special program that manages processor and other resources.

B To stop the computer

® AND the clock generator signal with ZERO

® when control unit stops seeing the CLOCK Clock } CLOCK
signal, it stops processing Generator

S Q

RUN

2024/10/17 42
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An algorithm for 5 x 4

BWe had ADD, AND, LD, BR, HALT(TRAP) [ Start j
B We had ADD instructions, but did not have multiply i,
instructions. So, we do R1 <— M[x3007]
R2 = M[x3008]
5x4 =5+5+5+5 R3 <0

>¢

R3 <— R3 + Rl
M[x3007]=5 R2 < R2 -1

M[x3008]=4

2024/10/17 44



A program that multiplies without a multiply instruction

Address Instruction Comments
x3000 001 0001000000110 R1 « M[x3007]
x3001 01 01010000000110 R2 « M[x3008]
x3002 01010110111 00000 R3 «0

x3003 0 001011011000000 R3 « R3+R1
x3004 0 0010100101111 11 R2 « R2-1

x3005 0 0001011111111 01 BR not zero M[x3003]
x3006 1111000000100101 HALT

x3007 0 000O0OO00O0O0O0OO0OOOO1IO0T1 The value 5
X3008 0 000000O0O0OOOOO1IO00DO The value 4
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Von Neumann Model
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LC-3 Data Path

PROCESSOR BUS
GateMARMUX GatePC
LD.PC—D‘:P‘Z A%
#
2 y
MARMUX PCMUX
L
“116
3 REG
. ' DR=“=  ALE
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i
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B [4:01]- 1 SEXT r-"’/
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(5]
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Instruction Processing Summary

m Instructions look just like data -- it" s all interpretation.
B Three basic kinds of instructions:
® computational instructions (ADD, AND, ..)
®data movement instructions (LD, ST, ..)
® control instructions (JMP, BRnz, ..)
B Six basic phases of instruction processing:
®not all phases are needed by every instruction

®phases may take variable number of machine cycles

r.ﬂ_,D >EA_>OP_,EX_,S_‘
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