
陈俊仕
cjuns@ustc.edu.cn

2024 Fall

计算机科学与技术学院
School of Computer Science and Technology

计算系统概论A
Introduction to Computing Systems

（CS1002A.03)

Chapter 4
The von Neumann Model

Review

◼MOS transistors are used as switches to implement logic functions.

⚫N-type: connect to GND, turn on (with 1) to pull down to 0

⚫P-type: connect to +2.9V, turn on (with 0) to pull up to 1

◼Basic gates: NOT, NOR, NAND

⚫Logic functions are usually expressed with AND, OR, and NOT

◼Properties of logic gates

⚫Completeness

—can implement any truth table with AND, OR, NOT

⚫DeMorgan's Law

—convert AND to OR by inverting inputs and output

2024/10/17 2

Review

◼We’ve touched on basic digital logic

⚫Transistors

⚫Gates

⚫Storage (latches, flip-flops, memory)

⚫State machines

◼Built some simple circuits

⚫adder, subtracter, adder/subtracter，Incrementer

⚫Counter (consisting of register and incrementer)

⚫Hard-coded traffic sign state machine

⚫Programmable traffic sign state machine

◼Up next: a computer as a state machine

2024/10/17 3

Today

◼Great Idea #2: Stored program computer(Von Neumann Model--A Machine Structure

⚫Basic Components for a machine

⚫The LC-3: An Example von Neumann Machine

⚫Instruction Processing

2024/10/17 4

Bottom up approach

Electronic System Level (ESL)Design

Motherboard Circuit Design

10 ICs/ PCB

1~50G Devices

Personal Computer:

Hardware & Software Design

1~10PCBs/System

Integrated Circuit Design

 100 Modules/ IC

0.25M~20G Devices

MEMORY

CONTROL UNIT

MAR MDR

IR

PROCESSING UNIT

ALU TEMP

PC

OUTPUT

Monitor

Printer

LED

Disk

INPUT
Keyboard

Mouse

Scanner

Disk

Now, You are Here.
2024/10/17 5

Great Idea #3: Abstraction Helps Us Manage Complexity

Solve a system of equations

Gaussian

elimination

Jacobi

iterationRed-black SOR Multigrid

FORTRAN C C++ Java

Intel x86Sun SPARC IBM PowerPC

Pentium 4
Core 2 Duo

AMD Athlon X2

Ripple-carry adder Carry-lookahead adder

Static CMOS Dynamic CMOS
Nanomechanical

Algorithm and Data Structure

Gates/Register-Transfer Level (RTL)

Application

Instruction Set Architecture (ISA)

Operating System/Virtual Machines

Microarchitecture

Electronic Devices

Programming Language/Compiler

Analog/Digital Circuits

Physics

2024/10/17 6

Great Idea #4: Software and Hardware Co-design

Software

Hardware

Application

Language

Machine Architecture, ISA

Microarchitecture

Logic and IC

Device

Algorithm & Data Structure

Computer System: Layers of Abstraction

Now, You

are Here.

2024/10/17 7

Register

◼A register stores a multi-bit value.

⚫We use a collection of D-latches, all controlled by a common WE.

⚫When WE=1, n-bit value D is written to register.

2024/10/17 8

Register

◼A four-bit register

⚫We use a collection of flip-flops instead of D-latches

⚫Read the contents of a register throughout a clock cycle

⚫And store a new value in the register at the end of that same clock cycle

2024/10/17 9

From ENIAC to the Stored Program Computer1

Basic Components2

The LC-3: An Example von Neumann Machine 3

Instruction Processing4

Our First Program: A Multiplication Algorithm5

Summary6

Outline

ENIAC - The first electronic computer ,1946年

Changing the program could take days!

2024/10/17 11

Programmed by plugboard and

switches, time consuming!

The Origin of the Stored Program Computer

John von Neumann,
c. 1955
Credit: Computer
History Museum

1944: ENIAC

⚫ Presper Eckert and John Mauchly -- first general electronic computer.

⚫ Hard-wired program -- settings of dials and switches.

1944: Beginnings of EDVAC

⚫ John von Neumann joined ENIAC team and proposed a stored program computer

called EDVAC

1945: John von Neumann

⚫ John von Neumann wrote "First Draft of a Report on the EDVAC" in which he

outlined the architecture of a stored-program computer.

⚫ failed to credit designers, ironically still gets credit

The basic structure proposed in the draft became known as the “von Neumann machine” (or
model).
⚫ a memory, containing instructions and data

⚫ a processing unit, for performing arithmetic and logical operations

⚫ a control unit, for interpreting instructions

2024/10/17 12

The Stored Program Computer Architecture
(von Neumann Machine Architecture or Model)

Output
Devices

Input
Devices

Memory

Programs & Data

Memory
Data

Register

Memory
Address
Register

Central Processing Unit

Temporary
Memory

RegistersA B

Arithmetic Logic Unit

Control Unit
Instruction

Register

Program
Counter

Data & Address Bus

Control Bus

MEMORY

CONTROL UNIT

MAR MDR

IR

PROCESSING UNIT

ALU TEMP

PC

OUTPUT

Monitor

Printer

LED

Disk

INPUT
Keyboard

Mouse

Scanner

Disk

2024/10/17 13

The Stored Program Computer

Electronic storage of
programming
information and data
eliminated the need for
the more clumsy
methods of
programming, such as
punched paper tape —
a concept that has
characterized
mainstream computer
development since
1945.

EDSAC

University of Cambridge

UK, 1949

Maurice V Wilkes.jpg

Maurice Vincent

Wilkes

2024/10/17 14

http://zh.wikipedia.org/wiki/File:Maurice_V_Wilkes.jpg

Stored program + Transistor technology

Change the program so

that you can do all

kinds of tasks on the

same hardware

The device is

smaller and faster

than a vacuum

tube

Two major inventions of the microprocessor chip

2024/10/17 15

◼回顾基本的逻辑门

⚫译码器、选择器

⚫锁存器-》触发器-〉寄存器

2024/10/17 16

From ENIAC to the Stored Program Computer1

Basic Components2

The LC-3: An Example von Neumann Machine 3

Instruction Processing4

Our First Program: A Multiplication Algorithm5

Summary6

Outline

von Neumann Model

2024/10/17 18

INPUT

• Keyboard

• Mouse

• Scanner

• Card reader

• Disk

MEMORY

MAR MDR

PROCESSING UNIT

ALU TEMP

PC

CONTROL UNIT

IR

OUTPUT

• Monitor

• Printer

• LED

• Disk

Memory

k x m array of stored bits (k is usually 2n)

Address

⚫ unique (n-bit) identifier of location

Contents

⚫ m-bit value stored in location

Basic Operations:

LOAD

⚫ read a value from a memory location

STORE

⚫ write a value to a memory location

2024/10/17 19

Interface to Memory

How does processing unit get data to/from memory?

MAR: Memory Address Register

MDR: Memory Data Register

To read a location (A):

1. Write the address (A) into the MAR.

2. Send a “read” signal to the memory.

3. Read the data from MDR.

To write a value (X) to a location (A):

1. Write the data (X) to the MDR.

2. Write the address (A) into the MAR.

3. Send a “write” signal to the memory.

2024/10/17 20

MEMORY

MAR MDR

Processing Unit

Functional Units

⚫ ALU = Arithmetic and Logic Unit

⚫ could have many functional units. some of them special-purpose

(multiply, square root, …)

⚫ LC-3 performs ADD, AND, NOT

Registers

⚫ Small, temporary storage

⚫ Operands and results of functional units

⚫ LC-3 has eight register (R0, …, R7)

Word Size

⚫ number of bits normally processed by ALU in one instruction

⚫ also width of registers

⚫ LC-3 is 16 bits

2024/10/17 21

PROCESSING UNIT

ALU TEMP

Input and Output

◼Devices for getting data into and out of computer memory

◼ Each device has its own interface, usually a set of registers like

the memory’s MAR and MDR

⚫ LC-3 supports keyboard (input) and console (output)

⚫ keyboard: data register (KBDR) and status register (KBSR)

⚫ console: data register (CRTDR) and status register (CRTSR)

⚫ frame buffer: memory-mapped pixels

◼ Some devices provide both input and output
⚫ disk, network

◼ Program that controls access to a device is usually called a driver.

2024/10/17 22

INPUT

• Keyboard

• Mouse

• Scanner

• Card reader

• Disk

OUTPUT

• Monitor

• Printer

• LED

• Disk

Control Unit

◼Orchestrates execution of the program

◼ Instruction Register (IR) contains the current instruction.

◼ Program Counter (PC) contains the address of the next instruction to be

executed.

◼ Control unit:

⚫ reads an instruction from memory

— the instruction’s address is in the PC

⚫ interprets the instruction, generating signals

that tell the other components what to do

— an instruction may take many machine cycles to complete

2024/10/17 23

PC

CONTROL UNIT

IR

From ENIAC to the Stored Program Computer1

Basic Components2

The LC-3: An Example von Neumann Machine 3

Instruction Processing4

Our First Program: A Multiplication Algorithm5

Summary6

Outline

LC-3 Data Path

2024/10/17 25

SR1

16

SR2
3

SR2MUX

16

16

16

16[10:0] 16 16

SEXT

SEXT

SEXT

[8:0]

[5:0]

[4:0]
SEXT

MEM.EN,R,W

16

MEMORY

MUX MUX

MDR

…

+

16

16 16

16

ADDR1MUX

2
PCMUX

+1

16

MARMUX

SEXT
[7:0]

GateMARMUX

LD.PC

16

1616

ADDR2MUX

16

LD.MDR

MUXMIO.EN

GateMDR

16

16

16

ALU
A BALUK

2

FINITE
STATE

MACHINE

N Z P

RUN

LD.IR IR

16

DR

LD.REG

REG

FILE

SR1

OUT

SR2

OUT 3

3

16

GateALU

LOGIC

16

LD.CC

PC

MAR

16

LD.MAR

LC-3 Data Path
EA OP EX SF D

GatePC

Control Unit Processing
Unit

Memory
Unit

INPUT OUTPUT

2024/10/17 26

From ENIAC to the Stored Program Computer1

Basic Components2

The LC-3: An Example von Neumann Machine 3

Instruction Processing4

Our First Program: A Multiplication Algorithm5

Summary6

Outline

Instruction

◼The instruction is the fundamental unit of work.

◼Specifies two things:

⚫ opcode: operation to be performed

⚫ operands: data/locations to be used for operation

◼An instruction is encoded as a sequence of bits. (Just like data!)

⚫ Often, but not always, instructions have a fixed length, such as 16 or 32 bits.

⚫ Control unit interprets instruction: generates sequence of control signals to

carry out operation.

⚫ Operation is either executed completely, or not at all.

◼A computer’s instructions and their formats is known as its Instruction Set Architecture

(ISA).

⚫ Persistent ISA invented by UW grad Gene Amdahl (IBM 360)
2024/10/17 28

Example: LC-3 ADD Instruction

◼LC-3 has 16-bit instructions.

⚫Each instruction has a four-bit opcode, bits [15:12].

◼LC-3 has eight registers (R0-R7) for temporary storage.

⚫Sources and destination of ADD are registers.

“Add the contents of R2 to the contents of R6,

and store the result in R6.”

2024/10/17 29

Example: LC-3 LDR Instruction

◼Load instruction -- reads data from memory

◼Base + offset mode:

⚫add offset to base register -- result is memory address

⚫load from memory address into destination register

“Add the value 6 to the contents of R3 to form a memory

address. Load the contents stored in that address to R2.”

2024/10/17 30

Instruction Processing（State Transition）

EA

OP

EX

S

F

D

2024/10/17 31

Decode instruction

Evaluate Address

Fetch OPerands from memory

EXecute operation

Store result

Fetch instruction from memory

Instructure Cycle

(CPI)

Instruction 1

Instruction 2

Instruction 3

……

Instruction n

Instruction n+1

Instruction n+2

……

Instruction Processing: FETCH

◼Load next instruction (at address stored in PC) from memory into

Instruction Register (IR).

⚫Load contents of PC into MAR.

⚫Send “read” signal to memory.

⚫Read contents of MDR, store in IR.

◼Then increment PC, so that it points to the next instruction in sequence.

⚫PC becomes PC+1.

EA

OP

EX

S

F

D

2024/10/17 32

Instruction Processing: DECODE

◼First identify the opcode.

⚫In LC-3, this is always the first four bits of instruction.

⚫A 4-to-16 decoder asserts a control line corresponding to

the desired opcode.

◼Depending on opcode, identify other operands from the remaining bits.

⚫Example:

—for ADD, last three bits is source operand #2

—for LDR, last six bits is offset

EA

OP

EX

S

F

D

Instruction Processing: EVALUATE ADDRESS

◼For instructions that require memory access, compute address used for

access.

◼Examples:

⚫add offset to base register (as in LDR)

⚫add offset to PC (or to part of PC)

⚫add offset to zero

2024/10/17 34

EA

OP

EX

S

F

D

Instruction Processing: FETCH OPERANDS

◼Obtain source operands needed to perform operation.

◼Examples:

⚫read data from register file (ADD)

⚫load data from memory (LDR)

2024/10/17 35

EA

OP

EX

S

F

D

Instruction Processing: EXECUTE

◼Perform the operation, using the source operands.

◼Examples:

⚫send operands to ALU and assert ADD signal

⚫do nothing (e.g., for loads and stores)

2024/10/17 36

EA

OP

EX

S

F

D

Instruction Processing: STORE

◼Write results to destination. (register or memory)

◼Examples:

⚫ result of ADD is placed in destination register

⚫ result of memory load is placed in destination register

⚫ for store instruction, data is stored to memory

—write address to MAR, data to MDR

—assert WRITE signal to memory

2024/10/17 37

EA

OP

EX

S

F

D

Changing the Sequence of Instructions

◼In the FETCH phase, we incremented the Program Counter by 1.

◼What if we don’t want to always execute the instruction that follows this one?

⚫examples: loop, if-then-else, function call

 --Need special instructions that change the contents of the PC.

◼These are called jumps and branches.

⚫ jumps are unconditional -- they always change the PC

⚫branches are conditional -- they change the PC only if some

condition is true (e.g., the contents of a register is zero)

2024/10/17 38

Example: LC-3 BR Instruction

◼Set the PC to the value PC+PCoffset. This becomes the address of the next

instruction to fetch.

“Load the contents of (PC + PCoffset) into the PC.”

2024/10/17 39

BR Condition PCoffset

Control of the Instruction Cycle

◼The control unit is a state machine. Here is part of a simplified state diagram for

the LC-3:

A more complete state diagram is in Appendix C.

It will be more understandable after Chapter 5.

2024/10/17 40

State1

State2 State4

State3

To State1

State5 State10

Driving Force: The Clock

◼The clock is a signal that keeps the control unit moving.

⚫At each clock “tick,” control unit moves to the next machine cycle

 -- may be next instruction or next phase of current instruction.

◼Clock generator circuit:

⚫Based on crystal oscillator

⚫Generates regular sequence of “0” and “1” logic levels

⚫Clock Cycle (or Machine Cycle) -- rising edge to rising edge

“1”

“0”

time→Machine

Cycle

2024/10/17 41

Halting the Computer: Stopping the Clock(by TRAP Instruction)

◼Control unit will repeat instruction processing sequence as long as clock is running.

⚫ If not processing instructions from your application, then it is processing

instructions from the Operating System (OS).

⚫ The OS is a special program that manages processor and other resources.

2024/10/17 42

◼To stop the computer

⚫ AND the clock generator signal with ZERO

⚫ when control unit stops seeing the CLOCK

signal, it stops processing

From ENIAC to the Stored Program Computer1

Basic Components2

The LC-3: An Example von Neumann Machine 3

Instruction Processing4

Our First Program: A Multiplication Algorithm5

Summary6

Outline

An algorithm for 5 x 4

◼We had ADD, AND, LD, BR, HALT(TRAP)

◼We had ADD instructions, but did not have multiply

instructions. So, we do

5 x 4 =5+5+5+5

M[x3007]=5

M[x3008]=4

2024/10/17 44

A program that multiplies without a multiply instruction

Address Instruction Comments

x3000 0 0 1 0 0 0 1 0 0 0 0 0 0 1 1 0 R1  M[x3007]

x3001 0 1 0 1 0 1 0 0 0 0 0 0 0 1 1 0 R2  M[x3008]

x3002 0 1 0 1 0 1 1 0 1 1 1 0 0 0 0 0 R3  0

x3003 0 0 0 1 0 1 1 0 1 1 0 0 0 0 0 0 R3  R3+R1

x3004 0 0 0 1 0 1 0 0 1 0 1 1 1 1 1 1 R2  R2-1

x3005 0 0 0 0 1 0 1 1 1 1 1 1 1 1 0 1 BR not zero M[x3003]

x3006 1 1 1 1 0 0 0 0 0 0 1 0 0 1 0 1 HALT

x3007 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 1 The value 5

X3008 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 The value 4

2024/10/17 45

From ENIAC to the Stored Program Computer1

Basic Components2

The LC-3: An Example von Neumann Machine 3

Instruction Processing4

Our First Program: A Multiplication Algorithm5

Summary6

Outline

Von Neumann Model

2024/10/17 47

INPUT

• Keyboard

• Mouse

• Scanner

• Card reader

• Disk

MEMORY

MAR MDR

PROCESSING UNIT

ALU TEMP

PC

CONTROL UNIT

IR

OUTPUT

• Monitor

• Printer

• LED

• Disk

LC-3 Data Path

2024/10/17 48

Instruction Processing Summary

◼Instructions look just like data -- it’s all interpretation.

◼Three basic kinds of instructions:

⚫computational instructions (ADD, AND, …)

⚫data movement instructions (LD, ST, …)

⚫control instructions (JMP, BRnz, …)

◼Six basic phases of instruction processing:

⚫not all phases are needed by every instruction

⚫phases may take variable number of machine cycles

EA OP EX SF D

2024/10/17 49

	Slide 1: Chapter 4 The von Neumann Model
	Slide 2: Review
	Slide 3: Review
	Slide 4: Today
	Slide 5: Bottom up approach
	Slide 6: Great Idea #3: Abstraction Helps Us Manage Complexity
	Slide 7: Great Idea #4: Software and Hardware Co-design
	Slide 8: Register
	Slide 9: Register
	Slide 10: Outline
	Slide 11: ENIAC - The first electronic computer ,1946年
	Slide 12: The Origin of the Stored Program Computer
	Slide 13: The Stored Program Computer Architecture (von Neumann Machine Architecture or Model)
	Slide 14: The Stored Program Computer
	Slide 15: Two major inventions of the microprocessor chip
	Slide 16
	Slide 17: Outline
	Slide 18: von Neumann Model
	Slide 19: Memory
	Slide 20: Interface to Memory
	Slide 21: Processing Unit
	Slide 22: Input and Output
	Slide 23: Control Unit
	Slide 24: Outline
	Slide 25: LC-3 Data Path
	Slide 26
	Slide 27: Outline
	Slide 28: Instruction
	Slide 29: Example: LC-3 ADD Instruction
	Slide 30: Example: LC-3 LDR Instruction
	Slide 31: Instruction Processing（State Transition）
	Slide 32: Instruction Processing: FETCH
	Slide 33: Instruction Processing: DECODE
	Slide 34: Instruction Processing: EVALUATE ADDRESS
	Slide 35: Instruction Processing: FETCH OPERANDS
	Slide 36: Instruction Processing: EXECUTE
	Slide 37: Instruction Processing: STORE
	Slide 38: Changing the Sequence of Instructions
	Slide 39: Example: LC-3 BR Instruction
	Slide 40: Control of the Instruction Cycle
	Slide 41: Driving Force: The Clock
	Slide 42: Halting the Computer: Stopping the Clock(by TRAP Instruction)
	Slide 43: Outline
	Slide 44: An algorithm for 5 x 4
	Slide 45: A program that multiplies without a multiply instruction
	Slide 46: Outline
	Slide 47: Von Neumann Model
	Slide 48: LC-3 Data Path
	Slide 49: Instruction Processing Summary

